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The theory of Markovian processes is used to investigate the bivariate distribution of chain length and composition 
in free-radical polymerization consisting of N types of monomer. By following the matrix calculation procedure, it 
is straightforward to determine the full composition distribution of polymers with a given chain length 
numerically, with the help of computer softwares capable of conducting symbolic calculations. For long polymer 
chains, the instantaneous composition distribution is approximated by a Gaussian distribution and the variance is 
inversely proportional to the chain length. These features are the same as those for copolymers (N = 2), which is 
conveniently represented by the Stockmayer bivariate distribution. Simpler numerical methods to determine the 
variance of the composition distribution are proposed. The Gaussian approximation of the composition 
distribution is a practical method to theoretically calculate the bivariate distribution formed in multicomponent 
polymerizations. © 1998 Published by Elsevier Science Ltd. All rights reserved. 

( K e y w o r d s :  c o p o l y m e r ;  composition distribution: f r e e - r a d i c a l  c o p o l y m e r i z a t i o n )  

INTRODUCTION 

In statistical copolymerization, the chain length of a 
copolymer is finite, and the chemical compositions as well 
as the chain lengths of individual chains cannot be identical. 
Therefore, even within the polymer chains produced in a 
very small time interval (instantaneously), there exists a 
bivariate distribution of composition and chain length. 
Simha and Branson ~ proposed a very extensive and 
complete treatment of the statistics of copolymerization 
by application of the terminal model for copolymerization. 
However, their results were in complex formulations and 
difficult to apply to practical problems. Stockmayer 2 
proposed a simple expression by replacing summations 
with integrals and factorials with expressions based on 
Stirling's approximation. The Stockmayer bivariate dis- 
tribution is useful not only for the practical purposes but to 
clarify the important characteristics of the chains formed 
through a Markovian process. The Stockmayer bivariate 
distribution, W(r,y) consists of the product of weight-based 
chain length distribution W(r) and composition distribution 
Comp(ylr) that is given by the conditional probability 
distribution given the chain length r. 

W(r, y) = W(r)Comp(ylr) ( 1 ) 

where y = Fj - Fl+~, Ft is the instantaneous mole fraction 
of monomer 1 bound to an individual chain, and FI,~ is that 
for infinitely long chains that is equal to the composition 
given by the copolymer composition equation 3. The copo- 
lymer composition distribution in Stockmayer's equation is 
given by the tbllowing Gaussian distribution: 

C o m p ( y l r ) = ~ x p ( - ~ )  (2) 
0,,/2~- \ 

o 2 = FI, ~F2, ~K/r (3) 

K =  X/1 + 4 F l , ~ F 2 - ~ ( r l r  2 - 1) (4) 

where rl and r2 are the reactivity ratios. 

Free-radical polymerizations that involve more than two 
types of monomer are widely used commercially. To 
optimize the industrial multicomponent polymerization 
processes, a bivariate distribution as simple as Stockmayer's 
equation, if available, is in great demand. It was shown 45 
that the pseudo-kinetic rate constant method in which it 
multicomponent polymerization reduces to that flw homo- 
polymerization provides an excellent approximation for the 
chain length distribution, W(r), including the cases with 
penultimate effects. In the present report, therefore, we 
fl)cus our attention to the chemical composition distribution 
term, Comp(ylr). 

Engelmann and Schmidt-Naake ~' proposed a Gaussian 
distribution for the composition distribution with N > 2 on 
the basis of the inference that the Stockmayer's parameter K 
can be formally related to the index of sequential 
inhomogeneity of Tosi and Catinella 7. According to the 
expression by Engelmann and Schmidt-Naake, however, the 
individual rate constants are required to obtain the variance, 
which is obviously wrong from the point of view of the 
Markovian statistics whose exact matrix expressions are 
shown later. On the other hand, Xtt ~ extended Simha and 
Branson's equation I to terpolymerizations (N = 3) quite 
recently. In addition to the disadvantage that his equation is 
limited to the, three-component systems, his equation is 
complex and difficult to use practically. 

The process of multicomponent polymerization is a 
typical example of a Markovian process. Detailed mathe- 
matical procedure to tk-~rmulate multicomponent polymer- 
ization (any number of N) in a matrix form was elucidated 
by Price 9. Price's formula is quite general and can be used 
fl~r any order of Markovian processes (i.e. higher order 
effects such as penultimate and penpenultimate effects can 
be accounted for). Price's matrix fl)rmula can be used to 
obtain the chain length distribution directly by calculating 
the rth power of the transition matrix. Concerning the 
composition distribution, however, Price showed the variance 
solely for N = 2. He showed neither full distribution profiles 
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nor the variance for N > 2. To obtain the full composition 
distribution profiles, partial differentiation of a generating 
function that involves rth power of a matrix is required. 
Although the generating function method is suitable to 
obtain analytical solutions for simpler systems (such as to 
obtain the analytical solution of the vadance of composition 
distribution for N = 2, as was shown by Priceg), such a 
method has been considered unfit for numerical calculations 
using computers. However, with the advent of software 
capable of making symbolic calculations, it has become 
possible to conduct such types of calzulations even with a 
personal computer. In the present report, we show the exact 
calculation results of the instantaneous composition dis- 
tribution for multicomponent polymer chains, and then we 
show that the distribution is approdmated well with a 
Gaussian distribution whose average and variance can be 
estimated in a straightforward manner. 

MARKOVIAN APPROACH TO MULTICOMPONENT 
POLYMERIZATION 

We consider a free-radical polymerization consisting of N 
types of monomer, M~,M2,'",Mi,"',MN. Because it was 
already shown that the present theory can be extended to 
higher order Markovian statistics without changing general 
matrix formalism 9, we illustrate the method only for the 
terminal model. We define the transition probability, Po, 
which is the probability that a growing polymer chain with 
M, end adds monomer Mj. The explicit expression for P(i iS 
given by: 

rij (5) 
P i j  = 

m = I rim 

where f; is the mole fraction of Mj in the monomer mixture, 
and r!i is the reactivity ratio defined by kdkij. Note that 
r,~ = l, and that the usual expression of the reactivity 
ratios for binary systems, r~ and r2 are represented by r~2 
and r2j, respectively, in the presert notation. 

Average composition of long polymer chains 
The average composition of polymer chains with infinite 

length can be given only by the transition probability 
defined by equation (5). By using the transition matrix, 
P = (Pij) the row vector for the steady state composition, V 
is given by: 

V P  = XV (6)  

where k is the eigenvalue of P. 
Therefore, what we seek is an eigenvector for the 

transpose of P. By defining a square matrix, A = (ai/) = 
P - I , where I is the unit matrix, the solution for the 
elements of V is given byg: 

~" i ~ C~lii (7 )  

where c is a constant, and ~lii is the cofactor of ai~. 
The mean copolymer composition (copolymer composi- 

tion at r---* ~) is, therefore, given 5y: 

ai, 
F:~-- ~v (8) 

j = l  

For example, the mean copolymer composition of a binary 
system is given by the following well-known equation: 

P21 FI,~ - (9) 
Pl2 + Pzl 

Chemical composition distribution of polymer chains 
For polymer chains with infinite length, the variance of 

the composition distribution is zero; however, there exists a 
nonzero variance for finite chains. The method shown here 
is essentially equivalent to that proposed by Price 9. Suppose 
the mole fraction that the initial growing chain end is M~ is 
given by ei, i.e. the type of the starting monomer unit of 
polymer chains formed at a given instant is determined by 
the probability, el. Then, we define the following vector and 
matrix: 

E,, = (sel,e2, "",eN) (10) 

I 
sPll P I 2  " '"  P1N / 

s P 2 1  P22 " "  P 2 N  
P , =  ( l l )  

SPNI PN2 "'" PN~' 

In addition, we use a column vector, 1 whose elements are 
all unity. 

We define the generating function for the composition 
distribution of the living polymer chain with chain length r 
as follows: 

g(s, r) = E,.P~ - t 1 (12) 

Note that as long as the probability of chain stoppage is 
small enough, i.e. the number-average chain length is 
large enough, the composition of the dead polymer chains 
is essentially the same as that for living chains. 

For example, g(s,2) for a binary system (N = 2) is given 
by: 

g(s, 2)=s2eipll +se2P21 +SelPl2+e2P22 (13) 

As illustrated by equation (13), the number of M~ units in 
the polymer chain is given by the power of s in the generat- 
ing function g(s,r), irrespective of the values of N and r. 

Therefore, the probability that the polymer chain with 
chain length r consists of m units of M~ (i.e. F~ = m/r) is 
given by: 

0"g(s, r) 
[s = 0 

Comp(F I jr) -- :~s" (14) 
m! 

In principle, we can obtain the composition distribution 
from equation (14). Although conventional numerical cal- 
culators are not suitable to conduct the above partial differ- 
entiation, this can be done with the help of symbolic 
calculator in a straightforward manner. We used the soft- 
ware, Mathematica ~ for this purpose. 

The average number of M~ units fi7 r and the average 
chemical composition of polymers with chain length r, 

fil Fl., (=~-) is given by: 

t~  -- c~g(s, r)l., = 1 (15) 
0s 
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Og(s, r) 
Is=i 

Fl,~ -- Os (16) 
r 

The variance of  the composition distribution in terms of the 
number of  Ml units, Vm is given by: 

82 g(s,r) Og(s,r) { Og(s,r) } 2 
%= ~ Is=~ + ~ t s = a -  __)-~--s=~ ( 1 7 )  

The variance in terms of the composition Fi, a 2 is given by: 

2 % 
a -- r2 (18) 

Variance for a binary system 
For a binary system (N = 2), it is straightforward to obtain 

"~ 9 the analytical solution for the a- value . For long chains, the 
effects of  chain ends become relatively unimportant. In 
order to remove the end effects, we use: 

P21 
e~ = F l , ~  -- (19) 

P~2 + P21 

In this case, one obtains: 

rP21 
Fn~ -- Pl2 + P2l (20) 

Vm-- Pl2P21 { 2 ( r +  1)(PI2+P21)-r(PI2+P21) 2 
(PI2 + P 2 1 )  4 

+ 2(1 - P 1 2  - P 2 I )  r + l  - 2 }  ( 2 1 )  

Therefore, in terms of  the fractions, one obtains: 

F l , r  ---- Fl.~ (22) 

2 FI~F2~ [ 2 2 
a - -  - l + - - - -  

r L P12+P21 r(Pl:'+P21) 
(23) 

"1 

{ ( l - P I 2 -  P21)" - 1}] × 

For large chain lengths, equation (23) is approximated by: 

°2~FI"-~F2'~(r Pl2 +p212 1) (foI r >> I) (24) 

It is straightforward to show that the wtriance given by 
equation (24) is the same as that for Stockmayer's composi- 
tion distribution (equation (3)), and thw: the K-value in 
Stockmayer 's  equation is given by: 

P I I  +P22 
K -- (25) 

P12 + P21 

In principle, the present method could be used to obtain the 
variance of  the composition distribution analytically for the 
cases with N > 2, although up to the present we have not 
succeeded in deriving a general expression of a 2. Instead of  
obtaining analytical solutions, we calculated the variance 
numerically using equations (17) and (18), by application 
of the symbolic calculation software. 

From eq2uation (23), it might be e':pected that the 
variance, a for N > 2 at a given reaction condition has 
a functional form: 

Table l Calculat ion condi t ions  invest igated in this work  

Two-componen t  system 
(1: styrene, 2: methyl  methacryla te)  
Monomer  composit ion:  f l  = 0 .2 , f2  = 0.8 
Reactivi ty ratios: r l  = 0.52, r2 = 0.46 

Three -componen t  system 
(1: styrene, 2: methyl  methacryla te ,  3: acrylonitri le) 

f~ = f 2  = 0 .35 , f~  = 0.3 
rl2 = 0.52, r,3 = 0.4, r21 = 0.46, r2~ = 1.2, r3, = 0.04,  

r~z = 0.15 
Four -component  system 

(1: styrene, 2: methyl  methacryla te ,  3: acrylonitri le,  4: vinyliden 
chloride)  

f ,  =.f-~ = i t  = / 4  = 0.25 
r12 = 0.52, r13 = 0.4, rt4 = 2.0, r21 = 0.46, r23 = 1.2, 

r2~ = 2.53, r31 = 0.04, r32 = 0.15, r;4 = 1.2, r41 = 0.14, r42 = 0.2, 
r 43  = 0 . 4 9  

ra 2 =~=  + _Z (26) 
r 

where ~:~ is a constant that is equal to l i m r ~  ( t o 2 ) ,  a n d  Z is 
essentially a constant, at least for large r-values. The valid- 
ity of equation (26) is examined later in this report. 

RESULTS AND DISCUSSION 

To make illustrative calculations, we chose four types of  
monomer in free-radical polymerization, styrene (St), 
methyl methacrylate (MMA), acrylonitrile (AN) and 
vinyliden chloride (VC). The monomer composition and 
reactivity ratios we have used are summarized in Table 1, 
i.e. St/MMA for N = 2, St /MMMAN for N = 3, and St/ 
MMA/AN/VC for N = 4. 

Fundamental characteristics of chemical composition 
distribution of polymer chains for a binary system 

The end group effects cannot be neglected for smaller 
chains. In the two-component system shown in Table 1, 
F ~  = 0.2846. If the mole fraction of the initial unit e~ is 
different from FL~, it is expected that the average 
composition FI.~ is different from FI,~ for smaller r- 
values. In addition, the distribution profile is expected to 
deviate from a Gaussian distribution. 

Figure 1 shows the calculated copolymer composition 
distribution for the cases with el = 0.5 and el ---- FI~. For 
copolymer chains with r = 10, the differences of e rvalues 
are significant. With el = 0.5 (x) ,  clear deviation from the 
Stockmayer equation (equation (2)) is observed, and even 
the Gaussian distribution, whose average and variance are 
the same as those for the distribution given by ×-symbols,  
does not fully coincide, which shows that the distribution is 
not Gaussian. With eb = FL~, the Gaussian fit is slightly 
better than the Stockmayer equation, but both curves could 
be a reasonable approximation. It is shown that for smaller 
chains: (1) the end effect is significant on both average and 
variance of the copolymer composition distribution; and (2) 
the distribution is not Gaussian in a strict sense. 

At r = 50 in the present example, the end effects become 
negligible. In the present report, because we are mainly 
interested in long chains, we show the calculation results 
only with et = F I ~ : ,  otherwise noted. 

Stockmayer 's  composition distribution clearly shows that 
the variance of the composition distribution is inversely 
proportional to the chain length, i.e. the distribution 
becomes narrower as chain length increases. Another 
important factor influencing the breadth of  the distribution 
is the randomness of copolymerization. 
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Figure 1 Calculated copolymer composition distribution for the two- 
component system (St/MMA) at chain length ,- = 10 and 50. The symbols 
are the exact distribution calculated from equati on (l 4), and the solid curves 
show the Stockmayer copolymer composition distribution, equation (2). 
The dotted curves are the Gaussian distributions whose average and 
variance are obtained from equations (16) and (18), respectively 
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Figure 2 Effect of randomness on the copo ymer composition distribu- 
tion calculated from the Stockmayer equation. In the figure, y = F~ - F t ~  

Figure 2 shows the effects of  the product of the reactivity 
ratios on the composition distribution, calculated from 
Stockmayer's composition distributicn, equation (2). As the 
alternating tendency increases (r lQ becomes smaller), the 
K-value in Stockmayer's equation becomes smaller and the 
distribution narrower. When the copolymerization is 
random, i.e. rlr2 = 1, the K-value is unity and the 
composition distribution becomes a binomial distribution 
(in terms of  the number of  Ml units, m). 

Three-component system 

Figure 3 shows the effect of  the, chain length on the 
variance of composition distribution for St/MMA/AN. The 
variance was calculated from equations (17) and (18). It is 
shown that ra 2 approaches a constant value fairly rapidly, 
and a 2 is inversely proportional to chain length for larger 
chains. 

Next, we examined the validity of  equation (26). Figure 4 
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F i g u r e  3 Calculated variance of the instantaneous composition distribu- 
tion for the three-component system (St/MMA/AN) 
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F~ 
F i g u r e  5 Calculated instantaneous composition distribution of polymer 
chains for the three-component system. The symbols are the exact 
distribution, while the solid curves are the Gaussian approximation 

shows the relationship between ra 2 and 1/r. The solid line is 
the regression line to B + C/r. It is shown that the functional 
form given by equation (26) is an excellent approximation. 

From the results shown in Figures 3 and 4, we propose 
two methods to estimate the variance of the composition 
distribution. 

(1) As shown in Figure 4, it is straightforward to obtain the 
~-value ((~ = l i m r ~  @02)) based on a few o2-values 

for rather smaller r-values. The (~-value so obtained 
could be used as a representative value to estimate the 
variance for a given chain length based on the fact that 
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ro  2 is approximately constant for long chains, as uti- 
lized in Stockmayer ' s  composit ion distribution. 

(2) Because re  2 does not change much for long chains, 
say r > 100, we may be able to use ro" obtained 
from r = 100 as a representative value. Often, the chain 
length range of  major interest is limi:ed; therefore, it 
may be better to use some representative chain length, 
r within such practical limitation, than to use ~ :~. 

Figure 5 shows the chemical compositic,n distribution of  
polymer chains. The symbols are the exact distribution 
obtained from equation (14), while the soEd curves are the 
Gaussian distribution. The average of' the Gaussian 
distribution is F l ~  and the variance obtained from r = 
100 was used as a representative value of ra  2. As shown in 
the figures, the composit ion distribution is Gaussian, and the 
o2-value estimated from r = 100 i,; a reasonable 
approximation. 

Four-component system 

Figure 6 shows the effect of chain length on the variance 
of  composit ion distribution for the four-component system, 
St /MMA/AN/VC. Again, rcr 2 approaches a constant value 
fairly rapidly, and o 2 is inversely proportional to chain 
length for larger chains. 

Figure 7 shows the relationship between ro 2 and 1/r. The 
functional form given by equation (26) is an excellent 
approximation also for N = 4. To estimate the variance for a 
specific chain length, the same strategy proposed for the 
three-component system can be used also for N = 4, and it 
would be reasonable to expect such methods are valid for 
any value of N. 

Figure 8 shows the chemical composit icn distribution of 
polymer chains. The symbols are the e ' :act  distribution 
obtained from equation (14), while the solid curves are the 
Gaussian distribution. The average ot the Gaussian 
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Figure 6 Calculated variance of the instantaneous composition distribu- 
tion for the four-component system (St/MMA/AN/VC) 
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Figure 8 Calculated instantaneous composition distribution of polymer 
chains for the four-component system. The symbols are the exact 
distribution, while the solid curves are the Gaussian approximation 
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distribution is Fl.~ and the variance obtained from r = 
100 was used as a representative value of  o 2. Again, such a 
type of Gaussian approximation gives an excellent fit for the 
distribution. 

In summary, the composit ion distribution is Gaussian for 
any mult icomponent polymerizat ion as long as the chain 
length is large enough, and the variance is inversely 
proportional to chain length for large chains. The variance 
can be estimated effectively either from a certain large 
r-value or from a few a 2 values for smaller chain lengths. 

Inference on the functional form of ~ 
The ~ z-value ((~ = limr_:~ (ra2)) would be expressed as 

a function of the transition probabilities, Pij. As shown in 
Stockmayer ' s  copolymer  composit ion distribution, ~ :~ for a 
binary system is given by: 

~ = Fi, ~(I -- F L :~)K (for N = 2) (27) 

The K-factor, K = P~ + P22) / (PI2  -}- P2]),  represents the 
randomness of copolymerization.  The value of K is unity if 
the copolymerizat ion is random. As the alternating tendency 
increases, the K-value becomes smaller, while it becomes 
larger as the tendency to form block copolymers increases. 

Similarly, it may be reasonable to expect that (= for 
N > 2 is given by: 

~ = F1, :~(I - FI, ~)K (28) 

where the physical meaning of  K would be the same as K for 
N = 2 .  

We calculated (:~-values under a special condition with 
Pij = P  for i 4=j, i.e. P] :  = PI3 = P:l  = P23 = P31 = P32 = P  

P O L Y M E R  V o l u m e  39 N u m b e r  11 1998 2371 



Bivariate distribution in multicomoonent polymerization: H. Tobita 

for N = 3. A larger p-value means that the alternating 
tendency is large. 

Figure 9 shows the change of K as a function of p for 
N = 3 and 4. We obtained K = 1 a t p =  l/3 for N = 3, and at 
p = 1/4 for N = 4, where the polymerization is 'random'. 
The K-factor becomes smaller as the alternating tendency 
increases, similarly with the K-value for the Stockmayer 
distribution. The K-factor could be expressed analytically as 
a function of the transition probabilities Psj; however, we 
have not succeeded in deriving general solutions for N > 2. 

CONCLUSIONS 

The theory of Markovian processes can be used to obtain the 
instantaneous bivariate distribution of chain length and 
composition in multicomponent polymerization directly, 
with the help of computer softwares capable of conducting 
symbolic calculations. It was found that the instantaneous 
composition distribution is approxirrated by a Gaussian 
distribution and the variance is inversely proportional to the 
chain length, irrespective of the number of components, N. 

We have proposed simpler methods to estimate the variance 
of the composition distribution. The Gaussian approxima- 
tion for the composition distribution would be a practical 
method to theoretically calculate the full bivariate distribu- 
tions formed in real multicomponent polymerization 
systems. 
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